

PMACS'19 – Paper 3

Towards a Predictive Energy Model for HPC Runtime Systems Using Supervised Learning Gence Ozer¹, Sarthak Garg¹, Neda Davoudi¹, Gabrielle Poerwawinata¹, Matthias Maiterth³, Alessio Netti^{1,2} and Daniele Tafani²

LRZ – Research for energy efficiency in production

- Hardware capabilities
- System integration
- Software solutions
- Examples at LRZ:
 - SuperMUC Phase 1: Hot water cooling & energy aware scheduling
 - CoolMUC 2: Adsorption chiller
 - LRZ projects for data center management regarding energy and cooling
 - SuperMUC-NG: Reflected in procurement document and now in production
- Big takeaway from all efforts:

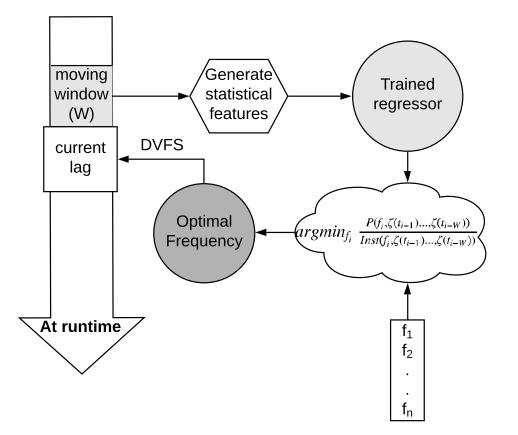
"If you can't measure it, you can't improve it" Peter Drucker

Monitoring energy in large scale systems

- Existing monitoring solutions:
 - Scheduler
 - Cluster monitoring

- \rightarrow Improve scheduling
- \rightarrow System health
- User-job monitoring \rightarrow Improved user support
- New use-cases:
 - Cluster monitoring for
 - System characterization
 - Understanding system utilization due to job characteristics.
 - Job runtime systems:
 - Utilizing application information
 - Predictive online performance tuning

Research question:



"Can we predict optimal frequency in the next time-step using available data."

Data collection:

• DCDB

- Continuous system monitoring
- System metrics e.g.:
 - BMC controller measurement
 - Kernel information (sysfs)
 - 'perf'readings
 - .
- Centralized collection, for long term usability
- Main paper:
 - Netti et al. SC'19 (check it out at SC!)

• GEOPM

Global Extensible Open Power Manager

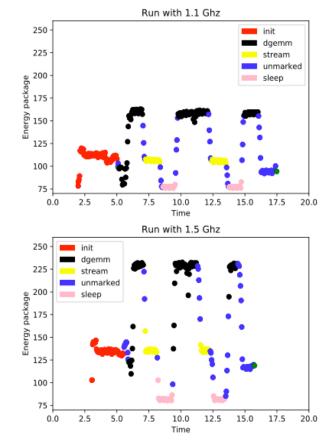
- Job runtime system to optimize power and performance of applications.
- Job specific tuning
- Tracing and reporting capabilities
- Extensible agent-based:
 - Optimization strategies
 - Hardware interfaces
- Main paper:
 - Eastep et al. ISC'17

Data Generation – Usability and Improvements

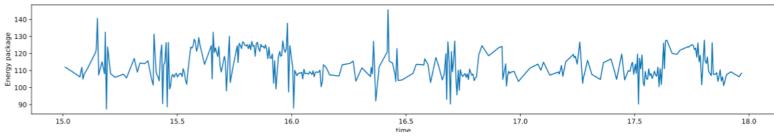
- DCDB:
 - ~400 counters 64bit each 0.1 second: 2.8GB per node per day.
 - CoolMUC3: 148 Nodes, CoolMUC2: 384, SuperMUC: 6480 Nodes
 - →CoolMUC2 would generate 1TB of monitoring data each day
 - + Data collection from sysfs every 2seconds.
 - What differentiates useful data from useless?
- GEOPM:
 - Fewer counters, selected by domain experts. No long term storage.
 - Criteria: High Granularity useful during Runtime: typical 4-8 cntrs dep. on use-case.
 - Granularity 0.01s, high fidelity due to GEOPMs use-case
 - Can decisions be augmented by data sources outside of runtime's scope?

Preliminary Work: Taking a first look at the data

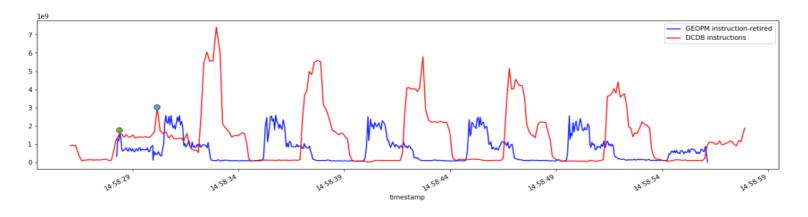
 Energy & Frequency for Benchmarks



• Energy from LRZ user applications (Gadget)



• Alignment of data sources



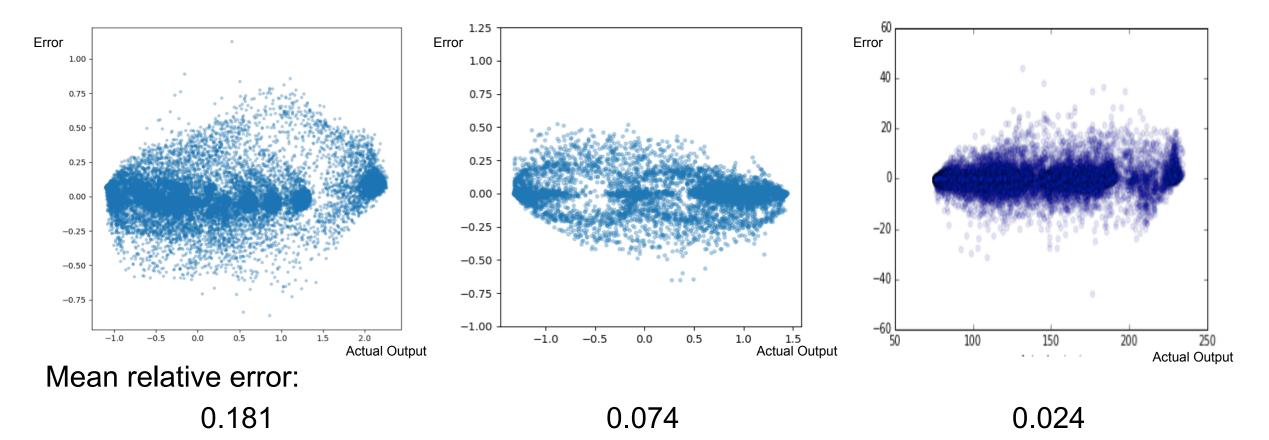
intel

ТЛ

Using well behaved benchmarks Preliminary Work: Selection of ML technique

- Ridge linear regression
- Support vector regression

• Random forest regression



Forecasting optimal Frequency for the next time-slice

- Initial offline approach:
 - Selection of ML technique (done)
 - Training of regressor
 - Weighting of data by importance

Goal:
$$MinEnergy(i) = min_{f_i} \frac{P(f_i, \zeta(t_{i-1}), \zeta(t_{i-2}), ..., \zeta(t_{i-W}))}{Inst(f_i, \zeta(t_{i-1}), \zeta(t_{i-2}), ..., \zeta(t_{i-W}))}$$

Energy manipulated by changing control Mechanism of DVFS → Frequency

$$f_i^{opt} = argmin_{f_i} \frac{P(f_i, \zeta(t_{i-1}), \zeta(t_{i-2}), ..., \zeta(t_{i-W}))}{Inst(f_i, \zeta(t_{i-1}), \zeta(t_{i-2}), ..., \zeta(t_{i-W}))}$$

Validation error (Power Package)

Validation error (Instruction Retired)

Prediction of instruction retired and power package with different data sources **Evaluating model performance**

|GEOPM|GEOPM + DCDB|

417

0.024

0.060

0.022

0.097

81

0.039

0.091

0.030

0.153

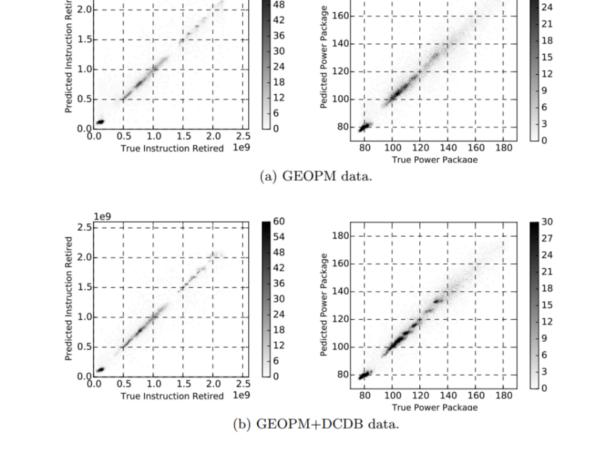
- Training and comparison of using
 - Only GEOPM

Number of features

Overall training error

Overall validation error

GEOPM + DCDB •



54

48

42

180

ğ 160

1e9 2.5

ed

2.0

27

24

21

Prediction of instruction retired and power package with different data sources **Evaluating Model performance: By application**

kripke

👀 nekbone

quick

amg

kripke

quick

ama

lammps

👀 nekbone

1e9 2.5 180 Predicted Instruction Retired Pedicted Power Package 160 2.0 140GEOPM 1.5 only 120 1.0100 kripke 0 nekbor auick amo lammps 0.0 1e9 2.5 180 Predicted Instruction Retired Pedicted Power Package 2.0 160 GEOPM .40 + DCDB 120 kripke .0(0.5 nekbon quick amg 80 lammps 0.0∟ 0.0 0.5 1.0 1.5 2.0 2.5 100 120 140 160 180 80 True Instruction Retired 1e9 True Power Package

PMACS'19 Paper 3 | 2019-08-26 | Matthias Maiterth

Derived feature importance of Random Forest Regressor Evaluating Model performance

GEOPM		GEOPM+DCDB	
Score Name		Score	Name
0.208	geopm inst-retired mean exp weighted	0.376	geopm inst-retired mean exp weighted
0.171	geopm cycles thread kurtosis	0.144	dcdb hfi0temp grad exp weighted
0.071	geopm cycles reference quantile 0.25	0.121	dcdb col idle grad exp weighted
0.060	geopm frequency	0.098	dcdb hfi0temp diff sum
0.048	geopm energy dram quantile 0.25	0.055	dcdb references quantile 0.5
0.047	geopm energy pkg quantile 0.75	0.052	dcdb energy quantile 0.75
0.045	geopm power pkg quantile 0.75	0.042	dcdb hfi1temp grad exp weighted
0.044	geopm power pkg quantile 0.5	0.040	dcdb intr quantile 0.25
0.040	geopm power pkg kurtosis	0.022	dcdb col idle diff sum
0.038	geopm inst-retired quantile 0.5	0.014	geopm frequency

Conclusions:

- Development of Machine Learning Model
 - Prediction of CPU power and Instructions Retired
 - With the goal of optimal frequency selection.

- Evaluation of combining data-sources:
 - DCDB & GEOPM

Model shows universality and good accuracy:

 \rightarrow Next Step: Integration of ML model in runtime

Gence Ozer Sarthak Garg Neda Davoudi Gabrielle Poerwawinata Alessio Netti Daniele Tafani Matthias Maiterth matthias.maiterth@intel.com

