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The Big Picture

• Multi-resource grid scheduling algorithm 

– pack jobs based upon individual resource requirements.

Job scheduling for EDA regression jobs

Consistency

Reduced 
variance

Predictability

• Tradeoff – performance vs fairness

• Goals

– Maximize the resource utilization in the grid.

– Minimal execution time (TAT).

– Minimize the operation cost of infrastructure.

• Proof-of-concept

– Histogram-based binning for regression jobs.
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Motivation

• Variation in TAT of regression runs is very high.

• Longtail in regression jobs.

• We propose a resource-aware scheduling 

– Balance performance and fairness. 

• Analysis of historical profile information from a set of regressions 

• Highly variable resource requirements to demonstrate 

– regression jobs are well suited for efficient packing on grid machines. 

• Our solution uses adaptive histogram-based binning techniques

• Evaluated the performance of proposed solution using real 

workload on the compute grid.  

EDA job Submission using traditional grid engines
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Proposed Approach
Job Scheduling for EDA regression jobs

• Collect and parse logs to capture job 

characteristics. 

• Custom driver replaces actual “qsub”

– gets all incoming jobs from any given testcase.

• In-memory db for historical information

• Small jobs placed locally
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Job Packing and Scheduling Techniques
Histogram Binning and K-means Clustering

• k lies between 3 and 4, 
• close to number of bins from histogram binning approach. 

• We generate the clusters using k = 4.
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Experiments and Results
Dedicated Grid Environment - where no other jobs are running

Total elapsed time: adaptive scheduler versus standard UGE scheduler to run 550 test cases per iter. on dedicated grid

• Same number of test-cases

– ~500

• All runs w/ outliers discarded
– System issues
– Testcase timeouts excluded 

Assumptions in Analysis

• ~25% reduction in mean TAT

• ~50% reduction in variance

Current Results
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Experiments and Results
Real-world Grid Environment - where other HPC jobs are running in parallel

Total elapsed time: adaptive scheduler versus standard UGE scheduler to run 550 test cases per iteration.
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Experiments and Results
Improvement in Grid Utilization

Improvement in grid (cluster of servers) resource utilization with our resource-aware job scheduling technique.

Utilization with our optimization Utilization without our optimization
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Conclusion

• An improvement of 34% compared to standard algorithm used by UGE job scheduler.

• This technology can be bundled as part of solutions to aid farm management at customer site

– Minimal execution time (TAT).

– Maximize the resource utilization in the grid.

– Minimize the operation cost of infrastructure.

• Future work:

– Our POC proves the feasibility of applying ML to perform more sophisticated job scheduling.

– Dynamic partitioning and placement.

– Building custom low-overhead measurement utilities.

Lessons Learned and Future Path
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