
© 2018 Synopsys, Inc. 1

Resource Aware Scheduling for EDA Regression Jobs
PMACS - 2019

INTERNATIONAL EUROPEAN CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING (EURO-PAR) 2019

Saurav Nanda, *Ganapathy Parthasarathy,
Parivesh Choudhary, and Arun Venkatachar

© 2018 Synopsys, Inc. 2

Agenda

• Background

– EDA Flow

– Regression Jobs

• Motivation

• Problem Statement

• Proposed Solution

• Experiments and Results

• Conclusion

© 2018 Synopsys, Inc. 3

Modern Integrated Circuit design flow
Simplified view

RTL Code

RTL Simulation
Clock-cycle Accurate

Pre-Silicon
Validation

Gate-level to
Implementation

Process

Static Timing
AnalysisLogic Simulation

Cells &
I/O lib

Cells, I/O
GDSII lib

RTL to Gate-level
Synthesis

Formal
Verification

Parallel Jobs

p1

p2

pn

Parallel Jobs

p1

p2

pn

Floor-planning and
Partitioning

Global and Detailed
Routing

Parallel Jobs

p1

p2

pn

Parallel Jobs

p1

p2

pn

Parallel Jobs

p1

p2

pn

© 2018 Synopsys, Inc. 4

The Big Picture

• Multi-resource grid scheduling algorithm

– pack jobs based upon individual resource requirements.

Job scheduling for EDA regression jobs

Consistency

Reduced
variance

Predictability

• Tradeoff – performance vs fairness

• Goals

– Maximize the resource utilization in the grid.

– Minimal execution time (TAT).

– Minimize the operation cost of infrastructure.

• Proof-of-concept

– Histogram-based binning for regression jobs.

© 2018 Synopsys, Inc. 5

Motivation

• Variation in TAT of regression runs is very high.

• Longtail in regression jobs.

• We propose a resource-aware scheduling

– Balance performance and fairness.

• Analysis of historical profile information from a set of regressions

• Highly variable resource requirements to demonstrate

– regression jobs are well suited for efficient packing on grid machines.

• Our solution uses adaptive histogram-based binning techniques

• Evaluated the performance of proposed solution using real

workload on the compute grid.

EDA job Submission using traditional grid engines

Correlation Matrix

CPU time (secs)

Job Distribution
40-50% of jobs are small

N
um

be
r

o
f J

ob
s

© 2018 Synopsys, Inc. 6

Proposed Approach
Job Scheduling for EDA regression jobs

• Collect and parse logs to capture job

characteristics.

• Custom driver replaces actual “qsub”

– gets all incoming jobs from any given testcase.

• In-memory db for historical information

• Small jobs placed locally

© 2018 Synopsys, Inc. 7

Job Packing and Scheduling Techniques
Histogram Binning and K-means Clustering

• k lies between 3 and 4,
• close to number of bins from histogram binning approach.

• We generate the clusters using k = 4.

Number of Jobs

C
P

U
 t

im
e

(s
ec

s)

© 2018 Synopsys, Inc. 8

Experiments and Results
Dedicated Grid Environment - where no other jobs are running

Total elapsed time: adaptive scheduler versus standard UGE scheduler to run 550 test cases per iter. on dedicated grid

• Same number of test-cases

– ~500

• All runs w/ outliers discarded
– System issues
– Testcase timeouts excluded

Assumptions in Analysis

• ~25% reduction in mean TAT

• ~50% reduction in variance

Current Results

© 2018 Synopsys, Inc. 9

Experiments and Results
Real-world Grid Environment - where other HPC jobs are running in parallel

Total elapsed time: adaptive scheduler versus standard UGE scheduler to run 550 test cases per iteration.

© 2018 Synopsys, Inc. 10

Experiments and Results
Improvement in Grid Utilization

Improvement in grid (cluster of servers) resource utilization with our resource-aware job scheduling technique.

Utilization with our optimization Utilization without our optimization

© 2018 Synopsys, Inc. 11

Conclusion

• An improvement of 34% compared to standard algorithm used by UGE job scheduler.

• This technology can be bundled as part of solutions to aid farm management at customer site

– Minimal execution time (TAT).

– Maximize the resource utilization in the grid.

– Minimize the operation cost of infrastructure.

• Future work:

– Our POC proves the feasibility of applying ML to perform more sophisticated job scheduling.

– Dynamic partitioning and placement.

– Building custom low-overhead measurement utilities.

Lessons Learned and Future Path

Thank You

